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ABSTRACT

We present a technique to adaptively bin sparse data using weighted Voronoi tes-
selations (WVTs). WVT binning is a generalization of Cappellari & Copin’s (2001)
Voronoi binning algorithm, developed for integral field spectroscopy. WVT binning
creates compact bins, while keeping the signal-to-noise ratio per bin constant. WVT
binning is applicable to many types of data and creates unbiased binning structures
that do not lead the eye. We apply the algorithm to simulated data, as well as several
X-ray data sets, to create adaptively binned intensity images, hardness ratio maps and
temperature maps. We also illustrate the separation of diffuse gas emission from contri-
butions of unresolved point sources in elliptical galaxies. We compare the performance
of WVT binning with other adaptive binning and adaptive smoothing techniques. We
find that the CIAO tool csmooth creates serious artifacts and advise against its use to
interpret diffuse X-ray emission.

Key words: methods: data analysis – techniques: image processing – ISM: general
– supernova remnants – galaxies: clusters: general – X-rays: galaxies

1 INTRODUCTION

X-ray data are generally very sparse in nature. To deal with
this problem, astronomers are often forced to either bin or
smooth their data. The most commonly used techniques are
simply binning to square blocks of a fixed size or convolving
with a fixed kernel. However, due to the large dynamic range
in many extended objects, ordinary binning and smoothing
techniques are never able to capture structure on large scales
without masking detail on smaller scales. This deficiency is
the motivation for spatially adaptive algorithms.

With the advent of the two major X-ray satellites,
Chandra and XMM-Newton, it is now possible to resolve
fine morphological structures in extended X-ray emitting
sources, such as galaxies, clusters, or supernova remnants.
This calls for new techniques to reliably extract spatial in-
formation. Sanders & Fabian (2001, ; hereafter SF01) were
the first to answer with a 2-dimensional adaptive binning
algorithm, applicable to background-corrected intensity im-
ages and hardness ratio maps. However, this algorithm is
restricted to a limited set of bin sizes, which prevents it
from being fully adaptive and from adjusting its resolution
so as to keep the signal-to-noise ratio (S/N) constant. This
creates jumps in S/N of a factor of ∼ 2, which, along with
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its quadilateral bin shapes, can lead the eye and suggest
structure that is not there.

Motivated by the different problem of analyzing 2-
dimensional optical integral field spectroscopic data, Cap-
pellari & Copin (2003, ; hereafter CC03) developed an in-
novative adaptive binning technique using Voronoi tessela-
tions. Their algorithm is able to smoothly adjust the bin size
to the local S/N requirements and does not impose a carte-
sian geometry on the image. Unfortunately, it can be used
only with strictly positive, Poissonian or optimally weighted
data whose S/N is guaranteed to add in quadrature. This
prevents it from being useful in even simple situations in X-
ray astronomy, involving data corrected for exposure map
effects or background, or in creating hardness ratio maps.

In this paper, we generalize CC03’s Voronoi binning
technique so that it can be used with any type of data. The
generalized algorithm makes use of Weighted Voronoi Tes-
selations (WVT), and combines the virtues of both CC03’s
and SF01’s techniques. It is as robust as, and even more
versatile than SF01’s code, while keeping the advantage of
CC03’s flexible bin sizes. The algorithm produces smoothly
varying binning structures that are geometrically unbiased
and do not lead the eye.

In section 2 of this paper, we review the two binning
techniques of SF01 and CC03 in more detail, pointing out
their advantages and drawbacks. In §3, we explain the func-
tionality of the generalized WVT binning technique, and
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compare its performance to the two older algorithms in sec-
tion 4. Section 5 then demonstrates the utility of WVT bin-
ning in creating X-ray intensity images, hardness ratio maps,
and temperature maps, and in disentangling the diffuse gas
emission in elliptical galaxies from the contribution of un-
resolved point sources. Finally, §6 quantitatively compares
WVT binning to commonly used adaptive smoothing algo-
rithms, before ending with conclusions in §7.

2 EXISTING ADAPTIVE BINNING
ALGORITHMS

2.1 Quadtree Binning:

The pivotal work on spatial binning of sparse X-ray data is
that of SF01, who produce surface brightness and color maps
for the analysis of X-ray cluster images. Their algorithm
starts with the smallest possible bin size of 1 × 1 pixel and
calculates the S/N for each bin. Each bin with a S/N higher
than the user supplied minimal value (S/N)min is marked as
binned1, its pixel members are removed from the pixel list,
and ignored for the rest of the binning process. In the next
iteration, the unbinned pixels are rebinned with square bins
of double the side length. The S/N of each bin is computed,
and those exceeding the threshold are marked. This process
is repeated until either all pixels are binned or the bin size
exceeds the image size. Thus, the bins are generally square,
with areas of 4n pixels, except for regions at the transition
between two binning levels. There, some pixels may have
already been binned on a previous level and removed. The
resulting bin shapes can be rectangular, L-shaped, or more
complicated. Even non-contiguous bins are common.

Owing to its hierarchical structure, which resembles a
quadratic tree commonly used in N-body simulations, we
will refer to this method as “quadtree” binning. Although
slightly different implementations are conceivable, we take
SF01’s version as representative. In section 4.1, we make
a rigorous quantitative comparison between this algorithm
and WVT binning.

2.2 Voronoi Binning:

Motivated by the need to optimally bin integral-field spec-
troscopic data, CC03 present a method to spatially bin two-
dimensional images using Voronoi Tesselations. The goal is
again to obtain a uniform S/N per bin distribution over the
entire image, while keeping each bin as compact as possible.

A Voronoi Tesselation (VT) is a partitioning of a re-
gion, defined by a set of points called the generators. Each
point in the region, or in this case, each pixel in the image, is
assigned to the generator to which it is closest. As a conse-
quence of this scheme, the boundary between two adjacent
bins is always the perpendicular bisector of the connecting
line between the two generators (Figure 1).

A subset of VTs, called Centroidal Voronoi Tesselations
(CVTs), has the additional property that the generators co-
incide with the centroids of the bins. CVTs are meaning-
ful when there is a density, ρ, defined over the region to be

1 Sanders and Fabian’s criterion of “maximal fractional error” is
equivalent to a “minimal S/N” threshold.

binned, and the generators are the density-weighted bin cen-
troids. Since the centroids cannot be calculated before the
bins themselves are constructed, it is necessary to construct
a CVT by iteration. A helpful tool is the Lloyd algorithm
(Lloyd 1982), which iteratively constructs CVTs with gen-
erators at each iteration taken as the centroids from the
previous step. The Lloyd iterations have the desirable effect
of moving generators into regions of higher density, thereby
creating smaller bins. For a uniform density, this algorithm
tends to create hexagonal lattice structures (Du et al. 1999).

In binning an image, one generally works with a signal
Sk per resolution element k (“pixel” from now on)2 and the
associated noise per pixel, σk. One can compute the S/N of
a bin Vi as

(S/N)i =

∑

k∈Vi

Sk

√

∑

k∈Vi

σ2
k

. (1)

For pure Poisson statistics, or certain forms of optimal
weighting, the (S/N)2 is additive (CC03). With this restric-
tion, one can make use of a property of the Lloyd algorithm
known as Gersho’s conjecture: applying the Lloyd algorithm
to the square of the density tends to produce a configuration
with equal mass per bin (Gersho 1979). CC03 exploit this
conjecture by applying the Lloyd algorithm to the quantity
(S/N)2, thus producing a CVT with a constant S/N per bin.

In order for the Lloyd algorithm to converge, a good ini-
tial set of generators is necessary. CC03 solve this problem
with a “bin-accretion” algorithm. Starting from the pixel
with the highest S/N in the input image, one grows a bin by
accreting nearest neighbors until the bin reaches a minimum
S/N or violates an imposed “roundness” criterion. Then the
next bin is started from the pixel closest to the weighted cen-
troid of all previously binned pixels. This method is guaran-
teed to generate compact bins within the desired S/N range.
Bins that do not meet both of these criteria are marked as
“bad” and their pixels are reassigned to the next closest
bin. The centroids of the resulting bins are then used as the
initial set of generators for the Lloyd algorithm.

By definition, a Voronoi tesselation can produce nei-
ther gaps in the data nor non-contiguous bins. The tessela-
tion adjusts to uneven boundaries smoothly, and the CC03
algorithm generally converges to a solution with small, spa-
tially independent scatter around the target S/N. The bins
are usually very compact, but can get more elongated or
ragged close to the boundaries, or in regions with very strong
S/N gradients. The principal drawback of CC03’s algorithm
lies in its applicability. The algorithm works only for data
in which S/N adds in quadrature, as the iterative part is
based on Gersho’s conjecture. This precludes the possibility
of applying the code to background-corrected or exposure-
corrected data, hardness ratios, or other types of data where
(S/N)2 is not additive.

2 For integral field spectroscopy, this is the averaged signal over
a fixed wavelength interval.
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Figure 1. A normal VT (left) and a WVT (right) with identical
bin generators zi (crosses). The numbers attached to the bins are
the associated scale lengths δi. The dashed lines connect neigh-
boring bin generators. Note how the bin boundaries are always
perpendicular to them. For a normal VT, the bin boundaries are
the perpendicular bisectors; for a WVT, the dashed lines are di-
vided proportional to the respective scale lengths.

3 ADAPTIVE BINNING WITH WEIGHTED
VORONOI TESSELATIONS

3.1 Introduction to Weighted Voronoi
Tesselations (WVT)

As described above, a normal VT assigns each pixel k to
the generator zi to which it is closest; i.e., one finds the
bin to which the pixel belongs by minimizing its distance
to the generator |xk − zi| over all bins i. In order to make
this definition more flexible, we use a generalization known
as a Weighted Voronoi Tesselation (e.g., Møller 1994). In a
WVT, each bin i has an associated scale length δi in ad-
dition to its generator zi, and a pixel k is assigned to the
bin that minimizes |xk − zi|/δi. One can picture δi as a fac-
tor that stretches or compresses the metric inside the bin
i. An intuitive analogy is simultaneous crystal growth, with
the generators representing the seeds and the scale length
representing the growth rate (Møller 1994). A WVT is com-
pletely described by its set of generators and scale lengths
and can therefore be stored very efficiently.

Figure 1 illustrates the appearance of a WVT (right)
with a simple example of bins with different relative scale
lengths, and compares it to an unweighted VT with the same
generators (left). Note how the bin boundaries move closer
to the generators with the smaller associated scale lengths,
making their bins rounder and more compact. For WVTs,
the boundaries b between two bins i and j always fulfill the
equation |b − zi|/δi = |b − zj |/δj , implying that the ratio of
the bin radii is equal to the ratio of scale lengths. This prop-
erty is used below to modify the bin sizes by manipulating
their relative scale lengths and letting the generator loca-
tions adjust. This replaces the Gersho prescription which
changes the bin sizes by explicitly moving the generators.

3.2 Adaptive Binning Algorithm

In the following discussion, we assume that there is some
general way to combine the signal and noise of various pix-
els to calculate the resulting S/N for the bins. We emphasize
that the details of how the S/N is actually calculated are ir-
relevant for the functionality of the WVT binning algorithm.

Our algorithm creates a weighted Voronoi tesselation,

choosing the scale lengths δi such that the bins have a near-
uniform S/N distribution, with the least possible scatter
around the target signal-to-noise (S/N)T. To find the ap-
propriate scale lengths, it is useful to consider the quantity
µi, defined by

µi =
(S/N)i

Ai

, (2)

where Ai is the bin area and (S/N)i is the S/N ratio in
bin i. The algorithm is aiming for a configuration where the
bins have a S/N equal to the target value, (S/N)T. In this
configuration, we should have, approximately,

µi =
(S/N)T

q δ2
i

, (3)

where q is a dimensionless constant that depends weakly on
bin shape (for circular bins, q = π). Combining equations
(2) and (3) gives a rule for setting the scale length at each
iteration:

δi =

√

(S/N)T
q µi

=

√

Ai

q
· (S/N)T

(S/N)i

. (4)

Since the binning depends only on the ratio of the scale
lengths, the value of q is unimportant. We show below that
good results are obtained taking q = const for all bins,
regardless of shape. This prescription replaces the Gersho-
Lloyd procedure which, at each iteration, moves the gener-
ators to the (S/N)2 weighted centroids. Such weighting is
superfluous in our algorithm, so we adopt the geometric bin
centers as the new generators.

The WVT binning procedure thus proceeds as follows:

(i) Start with an initial WVT
(ii) For each bin i, evaluate the signal to noise (S/N)i,

the area Ai and the geometric centers zi

(iii) Calculate the scale length δi for each bin according
to equation (4)

(iv) Reassign all pixels according to the new WVT with
generators zi and scale lengths δi

(v) Return to step (ii) until the bins stop changing sig-
nificantly

A binning with constant S/N across the field is a natural
stable fixed point of this iteration scheme, as it satisfies the
relation δi/δj =

√

Ai/Aj .
As in ordinary Voronoi binning, this algorithm requires

a good set of initial generators. We adopt CC03’s solution of
“bin accretion” with a few modifications for speed, relaxing
some acceptance criteria to suit sparse and not strictly pos-
itive data (e.g. background subtracted X-ray images). We
also employ a soft lower S/N boundary for accepting bins,
in which the S/N has no longer to be larger than the fixed
target S/N. Instead, accretion terminates if the addition of
another pixel would increase the scatter around the target
S/N. This modification keeps the average S/N closer to the
target value.

4 PERFORMANCE

4.1 Comparison with quadtree

While the simplicity of the quadtree binning algorithm
makes it easy to understand and apply, there are several
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disadvantages, which we illustrate in this section using sim-
ulated X-ray data. A suitable model for the surface bright-
ness profiles I(r) of a galaxy or galaxy cluster is the circular
β–model (Sarazin 1988):

I(r) = I0

[

1 +
(

r

rc

)2
]0.5−3β

+ IBg, (5)

where I0 is the central surface brightness, rc is the core ra-
dius, β is a slope parameter, and IBg is an additive, flat
background. We adopt the same parameters used by SF01:
the image size is set to 512 × 512 pixels, rc is 128 pixels, I0

is 100 cts pix−1, β is 0.67 and IBg is 20 cts pix−1. The simu-
lated X-ray image is obtained by populating the image with
counts according to a Poisson distribution. For the quadtree
algorithm, a minimum S/N limit of 14 (∼ 20/

√
2) produces

an average S/N of 19.92 in the test image and is therefore
chosen as the equivalent to a target S/N of 20 for the com-
parison with the WVT algorithm.

The results of the quadtree and WVT binning algo-
rithms are shown on the left and right sides of Figure 2,
respectively. The middle panels show the full images; the
upper panels zoom in on a small region to emphasize the
differences between the binning structures. Note that the
quadtree algorithm regularly forms non-contiguous bins and
can leave single pixels or small sets of pixels “stranded”. In
a few cases, these pixels can be directly picked out as iso-
lated dark spots in the image, since a larger binning level
usually also corresponds to a lower average flux per bin.
This effect occurs predominantly in regions where neighbor-
ing pixels have already been binned on a previous binning
level. SF01 offer two ways to deal with this problem. The
first is to handle isolated sets of pixels of a non-contiguous
bin separately, violating the minimum S/N criterion as the
bin is being split up. The alternative is to redistribute the
pixels to an adjacent neighbor bin. In the latter case, the
S/N of the neighboring bin will be elevated, which can lead
to an increased scatter in S/N. At the same time, one sacri-
fices resolution, as the effective number of bins is decreased.
Throughout the remainder of this discussion, we do not en-
force contiguous bins in the quad-tree algorithm for simplic-
ity. We simply note that this problem is absent in the WVT
algorithm, which can easily be made to enforce contiguous
bins.

The main problem with the quadtree algorithm lies in
its small set of discrete bin sizes. Except in small transition
regions, where the bin shapes are not square, the bin area is
restricted to values of 4n pixels. This discontinuous distribu-
tion of bin sizes is visible in the binned image, and illustrated
in the upper panels of Figure 3, which show the radial depen-
dence of the bin areas for quadtree (left) and WVT (right)
binning. The solid line indicates the optimal, theoretical bin
size needed to produce the target S/N. The discrete steps
in the quadtree bin area translate into an inhomogeneous
S/N distribution, shown in the lower left panel of Figure 3.
Each sharp increase in S/N corresponds to a sudden jump
in bin size, which decreases the local resolution beyond the
requirements of the target S/N. These jumps in S/N are
easily visible as circular rings in the fractional difference im-
age in the bottom left of Figure 2, showing that the binning
algorithm can create spurious structure. In contrast, WVT
binning allows bins to adjust their size smoothly in single

pixel steps, which results in a reduced scatter around the
target S/N and the removal of misleading spurious features
(bottom right panels of Figures 2 and 3).

The spatially correlated fractional error distribution re-
sulting from quadtree binning can be particularly misleading
when the the bin value is decoupled from the actual S/N dis-
tribution. An good example is a hardness ratio map. Here,
the signal is given by a flux ratio of two independent band-
passes, whereas the S/N is determined by the total flux of
both bands. Figure 4 show quadtree and WVT binned hard-
ness ratio maps of the Perseus cluster. The eye identifies two
concentric rings in the quadtree binned map (left) at around
50 and 150 arcsec. These features are imprints of the discon-
tinuous jumps in bin size, and are completely absent in the
WVT binned map (right). WVT binned hardness ratio maps
are described in more detail in §5.2.

4.2 Comparison with VT

As the WVT algorithm generalizes the method of CC03,
which was designed for optical integral field spectroscopic
data, it is natural to test the code on the same type of
data. We apply our WVT binning algorithm on the test
data provided by Cappellari & Copin, in their on-line code
release. The test data consist of a list of coordinates and
signal and noise values of the wavelength-integrated spectra
of a SAURON (Bacon et al. 2001) observation of NGC 2273.

Figure 5 compares the results of both algorithms for a
target S/N of 50. Both yield consistent results with a com-
parable scatter around the target S/N of only ∼ 6%. The
only noticable difference lies in the compactness of the in-
dividual bins, especially close to the border and in regions
of strong gradients. While CC03’s code tends to generate
strongly elongated shapes in these cases, the WVT bins stay
consistently rounder. To quantitatively measure roundness,
we introduce the average bin radius Rav and the effective
bin radius Reff :

Rav
i =

1

Ai

∑

j∈Vi

Rj , (6)

Reff
i =

√

Ai

π
. (7)

The more compact the bin, the smaller is the ratio Rav/Reff .
Its minimum at a value of 2/3 represents a perfectly circular
bin. Figure 6 shows Rav/Reff as a function of the distance
from the galaxy center and confirms that the WVT algo-
rithm (filled circles) produces more compact bins without
edge effects. At a distance of 20 arcsec, CC03’s Voronoi bins
(open circles) get more elongated, as shown by the jump in
Rav/Reff . This is mainly due to CC03’s use of a weighted
bin centroid, which pushes the generators toward the bright
end of the bin, elongating the bins in the opposite direction.

5 APPLICATIONS TO X-RAY DATA

5.1 Intensity maps

The most common application for adaptive binning in X-ray
astronomy is intensity binning. As discussed above, CC03’s
Voronoi binning algorithm is valid only for purely Poissonian

c© 2005 RAS, MNRAS 000, 1–14
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Figure 2. Comparison between Quadtree (left column) and WVT binning (right column); Middle Panels: Logarithmically scaled, binned
intensity images. The square indicates the region of the zoom-in shown in the upper panels. Each bin has been outlined to emphasize
the difference in the binning structure. Note the darker “stranded” bins on the left; Lower panels: Absolute fractional difference between
the model surface brightness and the binned simulated data.

c© 2005 RAS, MNRAS 000, 1–14



6 S. Diehl & T.S. Statler

Figure 3. Upper panels: area per bin vs. radius for quadtree (left) and WVT (right), the solid line indicates the theoretical prediction
to produce a constant S/N of 20 per bin for our test model. Lower panels: corresponding S/N per bin; note the jumps in S/N due to
the discrete bin sizes for the quadtree binning, which is completely absent in WVT; the solid line shows the target S/N, the dashed lines
indicate the natural scatter of ∼ 2 in quadtree and the 3σ rms scatter in WVT.

Figure 4. Comparison of quadtree (left) and WVT binning (right); Both panels show adaptively binned hardness ratio maps of the
core of the Perseus cluster, with dark colors indicating regions of higher temperature and/or lower photoelectric absorption. Note how
quadtree binning leads the eye into identifying two ring structures, due to the strong jumps in the S/N where the bin area suddenly
quadruples.

c© 2005 RAS, MNRAS 000, 1–14



Adaptive Binning with Weighted Voronoi Tesselations 7

Figure 5. Final result after application of the CC03’s Voronoi binning code (left) and the WVT algorithm (right) to the SAURON
data of NGC 2273. After completion of the binning process, the bins have been projected onto a finer grid to make it easier to identify
differences in the shape of the bins.

Figure 6. Comparison of the fone can use this informationi-
nal bin compactness between Voronoi binning (open circles) and
WVT binning (filled circles). The dashed line indicates the theo-
retical limit for a perfect circle.

data. This would correspond to raw counts for a perfectly
flat detector response without any background. However,
real X-ray data are not as simple. Many X-ray faint tar-
gets have surface brightness values comparable to the back-
ground, which itself may be spatially dependent. In addition,
real observations exhibit strong variations in effective area
per pixel, due to chip gaps, node boundaries, or partly over-
lapping multiple exposures. An observation’s effective area
Ek per pixel k is saved in an “exposure map,” which to-
gether with the effective exposure time τ , can be used to

convert raw counts Ck per pixel into a flux Fk with physical
units 3 of photons sec−1 cm−2 arcsec−2:

Fk =
Ck

Ek τ
− Bk. (8)

Here, Bk is the background flux per pixel. The variance in
the same pixel can be expressed as

σ2
Fk

=
Ck

E2
k τ 2

+ σ2
Bk

, (9)

where σBk
denotes the uncertainty that is attached to the

background value. The prescription for combining these
quantities to produce a S/N per bin is given by equation
(1). For the hypothetical case where τ = 1, Ek = 1 and
FBgk

= 0, the signal Fk reduces to pure counts and the
binning scheme will converge to a solution with a constant
number of counts per bin.

We use the well-known 50 ksec Chandra observation of
Cassiopeia A (Hwang et al. 2000) to demonstrate the power
of adaptive binning for X-ray images. The lower left panel of
Figure 7 shows the unbinned, exposure map corrected counts
image for the full exposure. In the panel directly above, we
restrict the data to only 1 ksec of exposure time. We bin this
image with the WVT algorithm to a target S/N of 5 (upper
right). A comparison with the full 50 ksec exposure shows
that WVT binning successfully reduces the noise, bringing
out the large-scale features in the outer parts of the im-
age, while keeping the appropriate resolution in the better
exposed filamentary features. Even in this short exposure,
one is able to pick out the central neutron star in the WVT
binned image. The image in the lower right of Figure 7 shows

3 Alternatively, one can multiply the photon counts with their
detected energy to get units of ergs sec−1 cm−2 arcsec−2; see
http://cxc.harvard.edu/ciao/download/doc/expmap intro.ps for
more details on exposure maps.

c© 2005 RAS, MNRAS 000, 1–14



8 S. Diehl & T.S. Statler

Figure 7. Top: Flux-calibrated Chandra image of Cassiopeia A with an exposure time of 1ksec (left) and the same data adaptively
binned with WVT to a target S/N of 5 (right); Bottom: Cassiopeia A with the full exposure of 50ksec (left) and the same image binned
to a S/N of 20 (right).

the full 50 ksec image, adaptively binned to a S/N of 20, to
demonstrate the applicability of WVT binning to a different
S/N regime.

5.2 Hardness Ratio Maps

Another useful tool in X-ray astronomy is the hardness ratio
(or “color”) map. The hardness ratio HAB can generally be
defined as the quotient between the fluxes FA and FB in two
different bands A and B, summed over all pixels of the bin
Vi:

HAB
i =

∑

k∈Vi

FA,k
∑

k∈Vi

FB,k

. (10)

The associated error can be expressed in terms of the noise
in the individual bands:

σHAB

i

= Hi

√

(
∑

k∈Vi

σ2
A,k)

(
∑

k∈Vi

FA,k)2
+

(
∑

k∈Vi

σ2
B,k)

(
∑

k∈Vi

FB,k)2
(11)

Depending on the choice of energy bands, a hardness ratio
map can be used as a diagnostic for any spectrally iden-
tifiable properties, such as temperature gradients or photo-
electric absorption features (e.g. SF01). A general discussion
about the physical interpretation of these maps, an appro-
priate choice of bands, and a generalization to n different
bands can be found in SF01 or Fabian et al. (2000).

We use the well-known 25 ksec Chandra observation of
the Perseus cluster (Fabian et al. 2000) to demonstrate a

c© 2005 RAS, MNRAS 000, 1–14



Adaptive Binning with Weighted Voronoi Tesselations 9

WVT binned hardness ratio map. The right panel of Fig-
ure 4 shows a color map for the Perseus cluster, in which
bright colors indicate regions of lower temperature and/or
lower photoelectric absorption. Our choice of bands (A:
0.3−1.2keV, B:1.2−5keV) shows both effects for illustrative
purposes; in principle, a different choice is able to separate
these two properties. The sharp dark feature close to the cen-
ter is due to the photoelectric absorption “shadow” of an in-
falling dwarf galaxy in the line of sight (Fabian et al. 2000).
To the north-east of the center, one can pick out a giant
radio cavity, with cooler rims surrounding it. The smooth
color gradient toward the center also supports a cooling flow
model (see e.g. Sarazin 1988) and the “swirl” of the bright
emission has been interpreted as a sign for angular momen-
tum of the infalling gas (Fabian et al. 2000). Note that the
WVT color map does not contain the spurious circular fea-
tures present in its quadtree counterpart.

5.3 Maps of Temperature (or other Spectral
Parameters)

Hardness ratio maps are often insufficient to disentangle the
spectral components of extended sources. This requires a de-
tailed spectral analysis of multiple regions within the field of
view. Current state-of-the-art techniques to generate maps
of temperature or other spectral parameters usually spec-
ify a regular grid of points, within which circular or square
regions are “grown” until they reach a minimum number
of counts for the spectral analysis (e.g. Nulsen et al. 2002;
O’Sullivan et al. 2005). One can extract a spectrum and cre-
ate response files for each region and feed them into an X-ray
spectral fitting package such as Xspec4, ISIS5 or Sherpa6.
Just as in adaptive smoothing (see also §6), the measure-
ments in this “adaptively accreted” temperature map are
not independent of each other. The user is burdened with
the task of deciding which features are actually resolved and
thus believable, i.e. which features are larger than the extrac-
tion regions. WVT binning, on the other hand, has the power
to automatically divide the field into unbiased, independent
bins with constant source counts per bin, while keeping the
individual bins as compact as possible. In addition, this re-
duces automatically the number of time-consuming spectral
fits from the total number of pixels to the number of inde-
pendent bins.

To demonstrate this capability, we adaptively bin the
46 ksec Chandra observation of NGC 4636 (Jones et al.
2002) to 900 counts per bin. We then extract a spectrum
for each bin and fit it with an absorbed, single temperature
APEC7 model. The left panel of Figure 8 shows the result-
ing temperature map, with the corresponding relative error
distribution on the right. This figure is directly comparable
to Figure 2a of O’Sullivan et al. (2005). They interpret the
asymmetric temperature distribution as the result of hot-
ter gas surrounding the cool core of NGC 4636, which is

4 http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
5 Interactive Spectral Interpretation System,
http://space.mit.edu/ASC/ISIS/
6 http://cxc.harvard.edu/sherpa/
7 Astrophysical Plasma Emission Code,
http://cxc.harvard.edu/atomdb/sources apec.html

penetrated by a “plume” of gas extending to the southwest.
Inside of this plume sits a concave, rising radio bubble, sur-
rounded by cool rims. The higher temperature inside this
cavity is interpreted as a projection effect, as the bubble
pushes the cooler gas away and thus increases the relative
contribution of the hotter surrounding gas along the line of
sight. The WVT binned temperature map shows the same
large-scale features as the O’Sullivan et al. (2005) map, with
no ambiguity as to their statistical significance.

5.4 Isolation of different components

In many astronomical sources, the observed emission comes
from multiple overlapping components. A good example are
normal elliptical galaxies, where the diffuse X-ray emission
is made up of contributions from interstellar gas and low
mass X-ray binaries (LMXBs). Because of their spectral dif-
ferences, hot gas and LMXBs contribute differently to the
soft-band and the hard-band images. Diehl & Statler (2005,
2006 in prep.) show how this fact can be exploited to recover
the gas emission alone. Let FS,k and FH,k represent the
background-subtracted soft and hard images in each pixel
k. We can express both as linear combinations of the unre-
solved point source emission Pk, the gas emission Gk, and
their respective softness ratios γ and δ:

FS,k = γPk + δGk, (12)

FH,k = (1 − γ)Pk + (1 − δ)Gk. (13)

Thus, the uncontaminated gas image and its associated noise
can be expressed as

Gk =
1 − γ

δ − γ

(

FS,k −
(

γ

1 − γ

)

FH,k

)

; (14)

σG,k =
1 − γ

δ − γ

√

σ2
S,k +

(

γ

1 − γ

)2

σ2
H,k. (15)

Diehl & Statler (2005) discuss the determination of the con-
stants γ and δ with spectral models.

Figure 9 demonstrates the isolation of the gas emission
using WVT binning, in a simulated observation. We assume
gas and LMXB sources with very different spatial distri-
butions for purposes of illustration. We adopt an elliptical
de Vaucouleurs profile for the LMXBs (top left), and a β
model, with a nearly orthogonal major axis, for the gas (top
right) and simulate hard and soft band images. The bottom
left panel of Figure 9 shows the full band emission, which is
nearly round. Applying WVT adaptive binning (lower right)
to the gas image (equation [14]), we are able to reconstruct
the true shape of the diffuse gas emission very accurately.

6 ADAPTIVE BINNING VS. ADAPTIVE
SMOOTHING

6.1 Adaptive smoothing in X-ray astronomy

Two adaptive smoothing algorithms are in widespread use
due to their inclusion in the main data analysis systems of
Chandra and XMM-Newton. The adaptive smoothing tool
of the XMM Science Analysis System (XMMSAS) is named
asmooth, whereas the Chandra Interactive Analysis of Ob-
servations (CIAO) tool is usually referred to as csmooth

c© 2005 RAS, MNRAS 000, 1–14



10 S. Diehl & T.S. Statler

Figure 8. Temperature map of NGC 4636. Temperatures are scaled linearly from 0.55 to 1.0keV, as indicated by the color bar. The
relative 1σ uncertainties, in percent, of the fitted values are shown in right panel. The error distribution is not completely uniform in
this case owing to a combination of different levels in background contribution, degradation of the instrument response for large off-axis
angles, and differences in the spectral shape for varying temperatures.

(Ebeling, White & Rangarajan, private communication)8.
Although their output is generally not used for quantita-
tive analyses, they have become the primary tools to create
“pretty pictures” for papers, talks and press releases. Adap-
tive smoothing algorithms are thus instrumental in forming
and influencing the perceptions of the broader astronomical
community and the public.

In adaptive smoothing, the size of the smoothing ker-
nel changes over the field of view to create a constant S/N
per pixel in the output image. It is worth emphasizing that
the number of independent measurements is equal in adap-
tively smoothed and adaptively binned images of the same
target S/N. Thus one does not gain any additional spatial
information by smoothing rather than binning.9

In this section, we give some cautionary advice on the
interpretation of adaptively smoothed images. We take a
β–model surface brightness distribution (equation [5]) with
I0 = 10 cts pix−1, β = 0.67, and rc = 64 pix, with a back-
ground of 2 cts pix−1, shown in the upper left of Figure 10.
We simulate a counts image, which we adaptively smooth or
bin to a target S/N of 5.

6.2 Comparison with asmooth

The asmooth algorithm is thoroughly described in the XMM-
SAS 6.0.0 user manual. 10 The basic idea is to increase the
size of the smoothing kernel for each pixel until the pixel
can “accrete” enough signal to meet the S/N requirement.
Thus, each pixel has a scale associated with it, which de-
termines the size of the convolution kernel that contributes

8 Note that the original csmooth code by Ebeling, White & Ran-
garajan was also named asmooth, although the algorithm differs
significantly from the XMMSAS tool. Whenever we refer to as-

mooth, we mean the XMMSAS tool.
9 Note that this statement is not true for filamentary structure
that is narrower than the local bin size.
10 http://xmm.vilspa.esa.es/sas/current/doc/asmooth/index.html

to the smoothed flux value at this point. In WVT binning,
each bin has a scale associated with it. In both cases, the
scale is determined from the local S/N distribution. Fig-
ure 10 shows the results of applying WVT binning (upper
right) and asmooth (lower right) to the same test model.
Both algorithms are able to reproduce the underlying sur-
face brightness distribution. Figure 11 compares the distri-
butions of relative errors for asmooth (long dashed line) and
WVT binning (solid line). Both distributions are consistent
with the constant targeted S/N value of 5, but asmooth’s
error distribution is not as regular as WVT’s and is skewed
slightly toward higher fluxes.

The skewed error distribution is a result of asmooth’s
tendency to preferentially misidentify high flux pixels over
low flux pixels as real features. We find that the asmooth
algorithm tends to build “bridges”, connecting nearby, in-
dependent noise peaks, and making them appear as linear
filamentary structures. Examples can be seen in the outer
parts of Figure 10. A cleaner illustration is shown in Figure
12. Here we have simulated a flat-field image, with a vertical
gradient in S/N. The figure compares the results of asmooth

(left) and WVT binning (right). The smoothed image shows
a wealth of spurious linear features that strongly lead the
eye, suggesting filaments and cavities. The binned image,
on the other hand, looks to the eye like a featureless but
noisy flat field. One can easily see that all of the apparent
structure in the smoothed image happens at the scale of the
WVT bin sizes, and is therefore not statistically significant
despite the target S/N of 5 given as input.

In conclusion, if an adaptively smoothed image is nec-
essary, we urge that it be published only in conjunction with
its smoothing scale map or an equivalent WVT binned im-
age.

6.3 A cautionary note on CIAO’s csmooth

More than half of all Chandra press release images of the dif-
fuse emission from galaxies and clusters of galaxies are gen-

c© 2005 RAS, MNRAS 000, 1–14
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Figure 9. Upper left: Model surface brightness distribution for unresolved point sources; Upper right: Model surface brightness distri-
bution for the hot, isothermal gas; Lower left: Simulated Poisson image for the full band, including contributions of both point sources
and gas; Lower right: Reconstruction of the gas surface brightness distribution with the help of WVT binning.

erated with the CIAO tool csmooth. We demonstrate here
that this algorithm creates very serious artifacts and should
be used only with extreme caution.

The csmooth algorithm (Ebeling, White & Rangarajan,
private communication) first calculates a set of smoothing
kernel sizes, ranging from the size of a single pixel to that of
the entire image. Starting with the smallest kernel, all pixels
with a sufficient S/N within the kernel to match the target
S/N requirements11 are convolved and added to the output

11 As of CIAO 3.1, csmooth’s option to supply an external back-
ground map to properly calculate the S/N distribution is not func-

image. These pixels are then removed from the input image,
so they make no contribution at larger scales. The algorithm
then picks the next larger kernel and starts over with the
remaining pixels. This continues until no more pixels are left
in the image, or the kernel size reaches its maximum. The
final csmoothed image is the sum of all these individually

tioning correctly. Instead, we use the default option to compute
the background from a local annulus surrounding the smooth-
ing kernel. For extended sources, this “background” region in-
cludes significant amounts of the diffuse emission itself, resulting
in strong S/N variations across the field and a severe overestimate
of required smoothing scales.

c© 2005 RAS, MNRAS 000, 1–14



12 S. Diehl & T.S. Statler

Figure 10. A comparison of WVT binning with adaptive smoothing. Upper left: Model surface brightness distribution; The other three
panels show the simulated counts image, adaptively binned image with WVT binning (upper right), adaptively smoothed with with
csmooth (lower left) and asmooth (lower right). In the csmoothed image, note the radial “fingers”, the annulus of deficient emission (deep
purple) and the boundary effects in the corners.

convolved slices, and the flux from each pixel is spread over
a different area, according to its smoothing scale.

Unfortunately, there is a fundamental flaw in this al-
gorithm. Because a different smoothing kernel is assigned
to each pixel in the input image, each pixel in the output
image is the sum of many convolutions of different parts of
the input image with different kernels. This is fundamen-
tally distinct from the asmooth algorithm, where the kernel
is assigned to the pixel in the output image, whose flux is
then a result of a single convolution using a single kernel. In
other words, asmooth collects flux, while csmooth distributes

flux. These procedures are identical only for pure convolu-

tion with a fixed kernel. When the kernel is variable, the
csmooth algorithm has the effect of moving flux from low
surface brightness regions into high surface brightness re-
gions. This is particularly destructive in regions of relatively
flat emission, where csmooth will move flux into the high-
flux tail of the noise distribution, creating spurious emission
features in the smoothed image. A good example is given in
the lower left panel of Figure 10, where csmooth obviously
produces spurious radial features.12 Note also the annulus of

12 This image looks very similar to the claimed radial “finger”

c© 2005 RAS, MNRAS 000, 1–14
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Figure 12. Comparison between asmooth (left) and WVT binning (right): the simulated counts data was derived from a flat Poisson
distribution with a count rate of 1 cts pix−1, with a spatially variable background “ramp” increasing linearly from 0 cts pix−1 at the
bottom to 5 cts pix−1 at the top of the image.

Figure 11. Histogram of relative errors, compared to the model
surface brightness, for the example of Figure 10. The WVT bin-
ning (solid line) and asmooth (dashed line) histograms are consis-
tent with the target S/N value of 5 (i.e. they approximate a Gaus-
sian with a width of 20%). Note that the adaptively smoothed im-
age is not a statistically better representation of the true surface
brightness. The histogram of csmooth results (dotted line) is very
irregular with a wide range of positive and especially negative
errors, demonstrating the failure of this algorithm.

structures, seen in the csmoothed image of NGC 4649 (Randall
et al. 2004).

depressed emission (deep purple colors) at a radius of about
200 pixels. Here, the kernel reaches its maximum size, dis-
persing the flux over a large area. The missing flux from
this annulus accumulates in regions with smaller smoothing
scales, producing a relatively sharp surface brightness edge
around a radius of 150 pixels. The relative errors in these two
regions range from +100% to -200% (Figure 11), indicating
the magnitude of this effect.

7 CONCLUSIONS

We have presented a generalization of the Voronoi adaptive
binning technique by Cappellari & Copin (2003), broadly
applicable to X-ray and other data. The generalized algo-
rithm exploits the properties of weighted Voronoi tessela-
tions, rather than the overly restrictive Gersho conjecture.
WVT binning is applicable to any type of data as long as
there is a way to robustly calculate the S/N, and the S/N
distribution changes smoothly over the size of a bin. We have
demonstrated the capabilities of WVT binning on exposure-
and background-corrected X-ray intensity images, color and
temperature maps, and in isolating the diffuse gas emission
in elliptical galaxies.

WVT binning overcomes the shortcomings of both
Voronoi and quadtree binning, the latter of which is in
growing use in X-ray astronomy. Sanders et al. (2005) have
recently published results using a “contour binning” al-
gorithm. In this new adaptive binning algorithm, the bin
boundaries follow the isophotes of an adaptively smoothed
image. This creates very irregular and elongated bins, which
lead the eye and introduce a shell-like appearance. We are
unable to make a rigorous quantitative comparison with this
technique, as the details are still unpublished. However, we
reemphasize that our WVT binning produces an unbiased
distribution of compact bins, and does not lead the eye.

c© 2005 RAS, MNRAS 000, 1–14



14 S. Diehl & T.S. Statler

We have also demonstrated the pitfalls of adaptive
smoothing, and regretfully advise against the use of the
CIAO tool csmooth for images of diffuse emission, as it cre-
ates very serious artifacts. If an adaptive smoothing tech-
nique has to be used, we recommend the XMMSAS tool as-

mooth instead. However we urge that adaptively smoothed
images be published only in conjunction with the smoothing
scale map or an equivalent WVT binned image to facilitate
the identification of real structures.
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